FRONTAL

November 2011

Frontal — version 1.0.0 1

MENU

INErOdUCTION £0 FrONTAl....ciiiiiiieeee et ettt e s e s be e e st esabeesabeeesmeeesareesane saneenn 3
AV o A o | = PO 3
AV a1V S o o1 = I T 3
HOW WOTKS FrONTAIP...ciiiiiiie ettt ettt s em e sar e s bt e ne e e smteesareeennee sreeeane 3

I o (oL 4
T3 AL o PP PP PPPPPR 4
oo =Y I o1 1 o 1P 5
U] o] oo g A=Y B I =4SPPSR 7
LOIUE] o] 0 0 T - T= 43 P P PP UUUUP N 13
ACLIONSCIIPE & EVENES coeeiiiiiieeeee e e e e e e ettt e e e e e s e s aab e e e e e e essannbaaeeeeeesennnnsenneeaaees ses 16
3§ = Tor £ O OO P TP PPRPRRP 19

=1 0] o] 1= USSR 21
D) - [o o PRSP 21
Y P TP 24
1] o= PP TOT PP PRRRPPR PR 27
AT PSP PPT PP 27
2T TY o =Tt Lol TSP P PP PR RRTOPPRROR 28
2T T [T =T SO O PO TP UOPOTOPRRPRRRORION 28

INEXE WWOTKS 1eeitieieeeiteee ettt e ettt e e ettt e e ettt e e e tte e e e sateeesaataeeesasaeeeaasseeeeaasaeeeeassaaeeanssaeeeansseeeensses sabeeesnnsseeesnnsnnens 29

ADOUL e AUTNOT ...ttt st sttt ettt et e e bt e b e bt e b e e be e e ebeenbeennes 30

ON-LiN@ REFEIENCES ...ttt ettt ettt b e s bt sh e sat e s et e st st e e bt e bt et e e beenbee s sareenteen 30

Frontal — version 1.0.0 2

INTRODUCTION TO FRONTAL

WHAT IS FRONTAL?
Frontal is an ActionScript 3 project capable of create RIA flex-based
applications from pure html code; Frontal is in effect an html2flex library.

It has the goal to be the bridge between standard html projects and flex
projects.

WHY FRONTAL?

Frontal gives a developer the chance to build RIA apllications without the
knowledge of a flex applicaton nature.

It's a swc library which could be integrated very easily into your own flex
applications and your frontal application could only be a part of the entire
project.

The Frontal project is also a portal project; it enables the possibility to build
modular application in a very easy way; the documentation you are visiting is
an example of a portal application with Frontal.

How WORKS FRONTAL?

A developer uses Frontal in the front-end part of his application; the server-
side can be realized with any server language available.

The Flex project, which makes use of Frontal, receives and parses html
response from the server; the Frontal swc then renders the content turning
the html tags into flex sdk components.

A portal realized with Frontal, can be enriched with all the style informations
of the flex components; the developer is able to apply this information
directly in the html code, populating the values of the style attributes.

The interaction with the content is achieved writing ActionScript code into
the html code, so taking advantage of all the potentialities of the flex
framework, such as strong interactivity with users, effects, browser
independency, high user experiences.

Frontal is compiled using the 3.4.1 Flex sdk.

Frontal — version 1.0.0

ToPICS

SET UP

The integration of the swc Frontal library involves very few steps.

First of all you must include, into your flex project, the swc file (if you are
using an ide such as Flex Builder or Flash Builder, you have to access to the
Library Path panel of your application), then you have to include few code
rows into the application file, as shown in the figure 1.

The visual Frontal component to be introduced is the RootHtmlIContainer
which represents the main container used by Frontal to inject the content; in
order to start up the Frontal framework it's necessary to configure the
Frontal instance object ApplicationContext; in the init function (invoked by
the creationComplete event of the application), it's set the rootComponent
property of ApplicationContext and then invoked the invokeService method.

The parameters to pass to the ApplicationContext invokeService method are
the url of the service which gives back the html content, and eventually the
request parameters in the url of the flex application; to retrieve these
parameters there is the getUrlParameters method of the Frontal CommonUtils
class which gives back a Dictionary object.

In the init method there is also an other property of the ApplicationContext
class to be set, that is the arrayConstantsClasses property, an array of custom
classes by which it is possible to extend the Frontal framework with custom
tags; however it is discussed in the Customizing section.

Particulary attention must be paid to the widht and height properties of the
Application object and of the RootHtmlIContainer object, and to the
declaration of the css files to include into the project.

Frontal — version 1.0.0

i

<m¥:Application xmlns:mx="http://www, adobe.cown/ 2006/ axml™ layout="ahsolute"
width="100%" height="100%" horizontal3crollPolicy="off"
creationComplete="init ()"
¥mlhs:components="1it.ang. frontal.renderer.components. ¥
<wx:Style source="project/ocss/wain.csstis
<mxi3cripts

import it.ang.frontal.util.CormmonlUtils;

import it.ang.frontal.modules.util.hpplicationContext;

public function init() : woid {
ApplicationContext.arrayClonstantsClasses = []:
ApplicationContext.getInstance () .rootComponent = rootComponent:

ApplicationContext.getInstance (] .
invokeldervice ("project/index. html™,

<fmE:3cript>
<oomponents: RootHomlContainer id="rootComponent”™ width="100%" height="100%" />

</mE:Applications

CommmonUtils. getlUr lParamaters()) ;

Figure 1 - Set Up

PORTAL EXTENSION

The Frontal library introduces an important behaviour in the development of
your application, that is the portal\modular extension.

A Frontal module can be inserted everywhere in your code and it has its own
lifecycle and a module context associated. To introduce a Frontal module it's
necessary declare a fimodule tag with it's id attribute, mandatory in order to
refer the module.

From an html point the fmodule tag has the same caratheristics as the div tag,
and so it is a real container and it could be assigned all the attributes and
style behaviours of the div tag.

The Frontal module gives the power to be the final point of a server
interaction; the developer, both in the form and in the a tag, can declare what
is the Frontal module that receives the server response, and it will be the only
part of your application that will be refreshed; this is a clear portlet
behaviour. Think about, for example, to have two modules, one for the filling
of some particular criteria parameters in order to make a data research, and
the other one that visualizes the results; the first one could be wrote in order

Frontal — version 1.0.0

to have, in the form tag, the module name of the second module, which
receives and shows the results of the research.

In the figure 2 there is an example code of the modular extension.

“<html =tyle="height: 100%">-
<hody style="height:100% widtsh: 100%">
FPortal Research Example
<fmedul e id="param=s_moduale" =styl e="widch: 100%">
In=ert wrour paramsters

“form id="=earch form" action="szarch.php"
fmedule="re=sults_modul e" method="FO3T">

“<table =tyl e="width: 100%">
“tr =tylae="width: 100%">-
<tdrName: </ td>
<A input name="nawe_input" typ e=went ' v dr
RS- 33
<tr style="width: 100%":>-
<tdrLastrname: £ 4>
<tdxinput name="lastname input" type=teacs 'S 0 wdx
<t
<ftzablex

<input type="submit" walue="3Jearch"
onCl ick="ctx. getComp | '5ca.:|:ch_fo:|::m' 1.=ubmit(] ">

< foxrmwo-
< Emoodal &
<Lfmodul e id="results_module" style="height:100% width: 100%":-
Bezule=
“<table =styl e="height:100% ;widch: 100%">
“<tr style="height:100% widch: 100%">
<td3Pa=ult= of the ressarch/td>
R4 35
<ftablex
< fmodal e
' hodyr

</ hizml -

Figure 2 - Portal Extension

Frontal — version 1.0.0

SUPPORTED TAGS
Here is the list of the tags supported from the Frontal library:

> html

It's the root tag. It is treated by Frontal like any other container, because
of this it's a best pratice to assigne it the style attribute height, in order to
have the desiderated behaviour from Frontal (the attribute width is
always setted to 100%).

<html>
or

<html style="height:100%">

» body

It's the body html tag. Even if this tag isn't very important for Frontal,
because it is treated like any other container, it is a best practice to insert
itin order to give a well-formed project structure.

Because the html tag is converted by Frontal to a container, it's a best
pratice to assigne it the style attribute height, in order to have the
desiderated behaviour from Frontal (the attribute width is always setted
to 100%).

<body>
or

<body style="height:100%">

» div
It's the most important and used tag.

It's converted by Frontal to a Flex Container Object; in order to have the
desiderated behaviour from Frontal, it's a best pratice to assigne it the
style dimension attributes.

This tag accepts every html style attribute, and it could be integrated with
the flex associated object attributes.

Frontal — version 1.0.0

<div>

or

<div style="width:200px;height:100%;overflow:hidden">
or

<div useHandCursor="true" buttonMode="true">

> p
It's the html p tag.

It's converted by Frontal to a Flex Container Object; in order to have the
desiderated behaviour from Frontal, it's a best pratice to assigne it the
style dimension attributes.

This tag accepts every html style attribute, and it could be integrated with
the flex associated object attributes.

<p>

or

<p style="width:200px;height:100%;overflow:hidden">
or

<p useHandCursor="true" buttonMode="true">

> font

It's the html font tag.

» img

It's the img html tag for image visualization.

It's converted by Frontal to an Image Object.

» span

Frontal — version 1.0.0

It's the span html tag.

It's converted by Frontal to a Container Object.

> a
It's the a html tag.

This tag gives the chance to navigate into the application based on its own
attributes:

target: it's the target html attribute; both if it is setted to blank or '#' and
it is absent, the swf is not refreshed and the users remains to interact
with the current content;

href: it's the href html attribute and represents the url to which forward
the request;

fmodule: it's a Frontal attribute of the a tag; in combination with the href
attribute, it drives the response of the request to the indicated module,
giving a portal behaviour.

» table
It's the table html tag.
It's converted by Frontal to a Grid Object.

It's able to manage tabulation properties, reading the 'align’ and
'cellspacing’ attributes.

> tr
It's the tr html tag.
It's converted by Frontal to a GridRow Object.

It's able to manage tabulation properties, reading the 'align' and 'valign'
attributes.

> th

It's the tr html tag.

Frontal — version 1.0.0

It's converted by Frontal to a Gridltem Object with the style attributes
'fontWeight' setted to 'bold' and 'horizontalAlign' setted to 'center’.

> td
[t's the td html tag.
It's converted by Frontal to a Gridltem Object.

It's able to manage tabulation properties, reading the 'align’, 'valign’,
'colspan’ and 'rowspan' attributes.

» input
It's the input html tag.

Frontal creats the associated gui object based on the 'type' attribute
value:

button\submit: Button Object;
checkbox: CheckBox Object;

radio: RadioButton Object (in this case there is the attribute 'groupName'
in order to define the radio button group);

hidden: Frontal creates a TextInput Object with the 'includelnLayout’ and
'visible' properities setted fo false;

password: Frontal creates a TextInput Object with the
'displayAsPassword' property setted to true;

text: TextInput Object.

» form
[t's the form html tag.

It has the same behaviour as a classical html form, except for the presence
of the 'fmodule’ attribute; this attribute drives the response of the request
to the indicated module, giving a portal behaviour.

In order to turn on the form it's necessary to invoke explicity the
'submit()' method; this method can accept also two parameters which are
the submit button name and the submit button value.

Frontal — version 1.0.0

10

» select
It's the select html tag.

It's converted by Frontal to a ComboBox Object; in combination with the
option tag, it can be populated with data.

> ul
It's the ul html tag.

It's converted by Frontal to a Container Object; it's able to generate an
unordered list of items.

> i
It's the li html tag.

It's converted by Frontal to a Container Object; it represents a list item of
an unordered list.

> b
It's the b html tag.

It's able to render bold text.

» strong
It's the strong html tag.

It's able to render bold text.

» br
It's the br html tag.

It's able to insert a single line break.

> Dbutton

Frontal — version 1.0.0

11

It's the button html tag.

It's converted by Frontal to a Button Object.
» center

It's the center html tag.

It's converted by Frontal to a Container Object with the flex style property
'htmlHorizontalAlign' setted to center.

> i
[t's the i html tag.

It's able to render italic text.

» h1-h2-h3-h4-h5-h6

They are the h html tags.

These tags are used to define headings.
h1: heading 1;

h2: heading 2;

h3: heading 3;

h4: heading 4;

h5: heading 5;

h6: heading 6.

» small
It's the small html tag.

It's able to render as smaller text.

> big
It's the big html tag.

It's able to render as bigger text.

Frontal — version 1.0.0 12

CustoM TAGS

Customizing tags is an entry point in the Frontal project to extend its
functionalities and the objects reusing.

Creating custom tags requires a few steps.

First of all it's necessary to create, into your flex project, the Flex Component
that will handle your custom tag; to achieve this your component must
implement the Frontal interface Componentinterface.

package it.ang.frontal.renderer. comwponents. interfaces

i
import it.ang.frontal.parser.Element:

public interface ComponentInterface

{

function set element(el:Element) : woid;
function get elementi() : Element;
function createComponents() @ woid;

Figure 3 - Componentinterface

The methods set and get are used to let Frontal pass to your component the
Element Object; this object represents the complete tag element with,
eventualy, its nested children.

The createComponents method is invoked by Frontal to let to your component
manage the content of your tag.

In figure 4 there is an example of component.

Frontal — version 1.0.0 13

package custom
{
import it.ang.frontal.parser.Element;
import it.and.frontal.renderer.components.interfaces. ConponentInterface;

import mx.containers.Canvas:
import mx.controls.Label:;

public class HelloWorldComponent extends Canwas implements
ConponentInterface
{

private war _element : Element:

public function HelloWorldCompohnent()l {
}

public function set elementiel:Element) @ woid |
this. element = el;

}

public function get elementi) : Element {
retum this. _element:

}

public function createComponents() : woid {
var label : Label = new Label(]:
lahel.text = "Hello World™:
addChild(label):

h

Figure 4 - HelloWorldComponent

The HelloWorldComponent is a Canvas and it renders a Label Object with text
'Hello World'. This text could be, for example, passed also from the html
content via an attribute field; in the createComponents method you would
have had this attribute available in the attributeMap property of the Element
Object.

The next step is to configure the Frontal framework; that has to be done
setting the static ApplicationContext property arrayConstantsClasses with a
your class; this class must have three static property as in figure 5.

Frontal — version 1.0.0 14

package custom

{

public clazs

{

"hello™:

}a

1:

'

import mx.collections.ArrayCollection:

public static war tagWameElementTypeMap:0Object = §

public static var tagNameElementListTypeColl:ArrayCollection =
new ArraylCollection|

public static war objectFromElementType:0bhject = {
110 : HelloWorldComponent

CustomProperties

110

Figure 5 - CustomProperties

The tagNameElementTypeMap property is a map which links the name of the
custom tag with a value important for the Frontal framework; these values
have to be greater than 109, because the smaller ones are used by Frontal.

The tagNameElementListTypeColl property is a list of values which represent
the corrisponding tags in the tagNameElementTypeMap map; this list is useful
to inform Frontal to not analyze and render any child tag of the custom tag;
for example, if the hello tag had one or more children, Frontal automatically
tries to analyze and render them; if you don't want this behaviour, because
it's in the HelloWorldComponent that you insert the creation of the children
tags, you have to insert the hello tag code, that is 110, in this list.

The objectFromElementType propery is necessary to correlate the tag,
represented by its code, and the Flex class that manages it.

The class with these properties just made, has to be inserted in the
ApplicationContext as in figure 6.

Frontal — version 1.0.0

15

=%zml version="1.0" encoding="utf-8"7>

=mx Application zmlns mx="http fwww adobe com/Z006/mzml" layout="absolute"
width="100%%" height="100%" horizontalScrollPolicy="off"
creationtComplete="1n1t)"

zmlns components="it ang frontal renderer. components. *">

<mx Style source="project/cssfmain cas"f=>

<mx:Soript®
<I[CDATA]
inport itang frontal util CommonTTtils,
mmport itang frontal modules util. ApplicationContest,
import custom. CustomPropertie s,

public function init() © woid {
ApplicationContext.arrayConstants Classes = [CustomProperties];
ApplicationContesxt. getlnstance) rootComponent = roctComponent;
ApplicationContext. getInstance) invokeService("projectiindesx html",
CommonTtilz. getUrlParameters());

}
1=

<fmxScript=
Zcomponents: EootHimlContainer 1d="rootComponent” width="100%" height="100%" /=

=fmzx Application=

Figure 6 - Application File

ACTIONSCRIPT & EVENTS

In order to let users to interact with your web application, you can develop
using action script AS3 as you normally do with Javascript in your html pages.

You can insert your AS3 code both into the script tag and directly in the
declaration of the tag, in responding to an event as shown in the example in
figure 7.

Frontal — version 1.0.0 16

La3cript>

LSacrip

<Adive
< /hody=
</html>

<html]l style="height:100%">-
<hody atyle="height: 100%™
<div style="height:1l00%;width:1l00%">

function warnil {

import mx.conhtrols.dlert;
Alert.show("¥ou have clicked me!™,"Vou 4id™);

<input id="impl" type="submit” walue="Click Me"™ onClick="warni1"/>=

Figure 7 — ActionScript integration

Into your AS code you can import all the classes of the Flex Framework you
want to use; further Frontal gives you the interaction with two Frontal
classes, the ApplicationContext class and the ModuleContext class.

» ApplicationContext: referenced with appCtx, you can access to every
component in the application with the getComp method passing the id
attribute value of the component; in the ApplicationContext class
there is, also, the local property; this property is an object you can
utilize for store and read variables.

» ModuleContext: referenced with ctx, you can access to every
component in the current module with the getComp method passing
the id attribute value of the component.

Here is the list of the event you can integrate into your html content:

» onClick: dispatched on the mouse click on a component and
turned into a Flex MouseEvent.

» onChange: dispatched on the selection of an item in a list
component, or when the value of an input field changes; it is
turned into a Flex Event.

» itemRollOver: dispatched when the mouse pointer rolls onto a
Menu item and turned into a Flex MenuEvent.

» creationComplete: dispatched when the component has finished
its construction, property processing, measuring, layout, and
drawing; turned into a Flex FlexEvent.

» onLoad: the same as the creationComplete event.

Frontal — version 1.0.0

17

dataChange: dispatched when the data property changes; this is a
property of the Flex Framework components important when
these components are used as renderers; turned into a Flex
FlexEvent.

onMouseOver: dispatched when the user moves a pointing
device over a component; turned into a Flex MouseEvent.

onMouseOut: dispatched when the user moves a pointing device
away from a component; turned into a Flex MouseEvent.

onMouseDown: dispatched when a user presses the pointing
device button over a component; turned into a Flex MouseEvent.

onMouseUp: dispatched when a user releases the pointing device
button over a component; turned into a Flex MouseEvent.

onKeyPress: dispatched when the user presses a key; turned into
a Flex KeyboardEvent.

onFocus: dispatched after a display object gains focus; turned
into a Flex FocusEvent.

onBlur: dispatched after a display object loses focus; turned into
a Flex FocusEvent.

onDblClick: dispatched when a user presses and releases the
main button of a pointing device twice in rapid succession over
the same component; turned into a Flex MouseEvent.

In the event listener function or, directly in the event attribute in the
declaration of the tag, Frontal passes also the event object so it can be
accessed by your AS code, as shown in figure 8.

Frontal — version 1.0.0

18

<html style="height:100%">
<hody style="height:l00%">-
Ldiv style="height:100%width: 100%™

Z3cript>
function warni()] {
import mx.controls.hlert:
var localld @ 3tring = event.target.id;
Alert,show("You hawve clicked the " + localld + ™ button!™ ["¥ou
did™):
'
<iscript-
Zinput id="impl" type="submit” walue="Click Me"™ onClick="warn(1"/>
Linput id="irmp 2" type="subnit” wvalue="Click Me"
onClick="import mnx.controls.Alert;
Alert.show('¥ou hawe clicked the ' + ewent.target.id + '
button!','¥You did again'):"/=

< /fdive
</ hody-
</html>

Figure 8 - Events

EFFECTS

Flex provides the opportunity to enrich applications by introducing visual
effects with ease.

Frontal embraces this opportunity by declaring an own tag to be inserted in
the html content, and this tag is called effect and its main attribute is the type
attribute; this attribute specifies the type of effect to be delivered.

Here is the list of the possible effects to introduce coded by the attribute type:

wipeLeft : WipeLeft
wipeRight : WipeRight
wipeDown : WipeDown
wipeUp : WipeUp
resize : Resize

move : Move

zoom : Zoom

blur : Blur

fade : Fade

glow : Glow

vV ¥V ¥V ¥V ¥V VvV V¥V V¥V V V V

iris : Iris

Frontal — version 1.0.0

19

> rotate : Rotate
> tween: Tween

» dissolve : Dissolve

In the effect tag it is possible to insert all the attributes which can be
assigned to the particular effect created; the effect created can be
accessed also with the AS code using the ApplicationContext or the
ModuleContext with the getComp method and then applying the methods
play, playAll, stop, or directly accessing to the Flex effect instance with the

property effect.

</html>

<html style="height:100%">=
<hody style="height:l00%">-
<div style="height:100%;width: 100%">
Zeffect 1d="eff" type="rezize” duration="2000" /=

Zeffect 1d="eff2" type="rezize” widthTo="100" duration="2000"
targets="inpl, inpa" /=

Z3cript>

function warn(idInp:3tring)] {

if {imp.width > 30) inp.width = 30;

else inp.width = 300;

<iscrip s

Zinput id="impl"™ type="submit” walue="Click Me" onClick="warn('inpl')
effect="resizeEffect: e f£" /=

<input id="imp 2" type="submit" walue="Click Me" onClick="warn('inp2')"™
effect="rezizeEffectieff" /-<hr /-

<input id="imp 3" type="submit” walue="Hesize 411"
onClick="ctx.getConp('effa' J.plavyil" s>

< /fdiv-

< /hodys

Obdect = ctx.getComp (idInp) ;

rr

Figure 9 - Effects

Frontal — version 1.0.0

20

SAMPLES

NOR~RNBRNL

DATAGRID

In this example is shown the integration, already available in Frontal, of the
Flex component DataGrid; in the example in figure 10 there is the
visualization of the DataGrid with the html source and the Custom Frontal
Class DataGridContainer in figure 11 and 12.

The tag inserted is grid and it is converted to an instance of the
DataGridContainer class; in the configuration mechanism the grid tag is
inserted also into the tagNameElementListTypeColl property, which instructs
Frontal to no treat the children elements of the grid tag, because it will be the
DataGridContainer to do this job.

Name Lastname Country
Lngelo Costanza Ttaly
Tack Strith England
Eahindra Singh India
Pedro Hermandez Mexico
Stewart Black T3

Figure 10 - DataGrid

Frontal — version 1.0.0

21

<grid id="datagrid” style="width:20%" zortableColumhz="true">
<th dataField="=zel" width="50" headerText=" ">
<div id="cont” style="width:20%;text-align:center”™ onload="init();"
dataChange="init() ;">
<SCcript>
function initil {
wvar inp : Object = ctx.getComp('ch'):
var ch¥ @ 3tring = ctx.getComp('cont').parent.data.sel:;
if{ch¥ == '¥') inp.selected = true:
elze inp.selected = false;
!
Lfscripts
<input id="ch"™ type="checkbhox™ />
< fdivs
< /th-
<th dataField="name” headerText="Name"/ >
<th dataField="lasthame"™ headerText="Lastname" />
<th dataField="country™ headerText="Country” /=
<dataprovider>< ! C[DATA[«<tr=<sel>N< /sels<nanex=Angelos manex<lastnane>=Costan
zas flastnane><countrye-Italy /countrys=</tr>

<Lre=Laelx>V fael-Tnames=Jack: fmane=<lasthane=5ni th flasthane>= country=-Engl
and< fcountry=< L=

<Lre=Czelx>¥V< /zel-<name>=Fahindra /hames< lasthane>3ingh. /lasthane><country>
India</countryr-</tr>

<Lre=CselxN< /selr<name>=Pedrod /nane><lasthane>=Hernandezs /lasthanes>< cOountry
FMexicod /foountrys< fErs

SLErCgelrV< foelr<namer3tewarts /nanes<lastnanerEBlack</lasthane><country-1T
SLfoountEyeL fer=]]
<jdataprovider>
</Sgrids

Figure 11 - Grid Html Source

Frontal — version 1.0.0

22

i
import
LTt
impaort
Lmport
impaort

umport
import
Lmport

]
1

Headat™,

packape itang. frontal renderar.componants
]

itang frontal parser. Element:

itang frontal rendarer componants. intarfaces Component Interfaoa;
itang frontal util. Constants;

itang. frontal util FrontalClassFactory,

itang. frontal .util. StringUl;

moc.col lactions XML ListCollection;
moc.controls. DataGrid;
moc.controls dataGridClasses, DataGridCol wimn:

public class DatalGiridContainer extends DataGrid implements ComponentInterface

private var _element : Element;

public function DataCividContainar|}

i
1

i

super(};

public function set elament(el:Element) @ void |
this._element = al;

i

public function get element() : Element |
return this._element;

'

public function createComponants() : void |
creataCols():
ingertDatal

'

private function createCols() @ voud {

var columnsT @ Array = new Array()

var valua @ String:

for eachivar e : Element in _element.childElementArray) |

iffe clamentType == Constants.element TypeTH) |
value = 2 attributahlap[visibla'):
if { !StringUtilisEmpty(valua) § §
iff value == "falga’)
CONLIS;

;
var col @ DataCridColumn = new DataCGridColumni};
value = g.atributehMap'dataFisld);
col.dataField = (!SringlluLisEmpty(value) 7 value @ 'labal’
value = 2 atiributahMap[headerT ext’]:
colheaderText = { !StringUtilisEmpty(value) 7 valua

Frontal — version 1.0.0

23

valuz = 2 atributaMap[width']:
colwidth = ['StringlUtl isEmpty(value) 7 Number(value) :
col.width;
for egch{var 51 String in e.styleAtributahlap)
col.satStyle(st, esvleAnributahap[st))
ifla.childElementAreay "= null) |
var renderarElement @ Element =
a.childElementArray[]:
var frontalCF @ FrontalClassFactory = new
FrontalClassFactory])
frontalCF .element = renderarElament;
celitemPenderer = frontalCF;
i
columns T push{col):
i

¥
i

¥

this.celumns = columnsT:
i
¥

private function msertData() @ voud §
this.dataProvider = new XMLListCollection(),
var data : XML:
for each(var & : Element in _glement. childElemeantArray) |
if{e taghams == "dataprovider’) |
var datal : String
if{e.childElementArray "= null && e.childElementArray[0] =
null} 4
dataS = "<apa=" +
Element|e.childElementArray[0]} text + </ data™";
data = XML{dataS);
this dataProvider = new XMLListCollection(data. .tr);
selactadltem = null:

Figure 12 - DataGridContainer

As you can see from the source of the DataGridContainer Class, the creation of
the columns and the reading of the data to visualize is responsability of the
class, which is a DataGrid.

In the createCols method there is also the use of another Frontal class, that is
the FrontalClassFactory class; this class extends the Flex ClassFactory and is
able to generate components from a generic Element object; this is very
useful in cases of item renderer objects.

LIST

Frontal — version 1.0.0 24

In this example is shown the integration, already available in Frontal, of the
Flex component TileList; in the example below there is the visualization of
the TileList with the html source and the Custom Frontal Class ListContainer.

The tag inserted is list and it is converted to an instance of the ListContainer
class; in the configuration mechanism the list tag is inserted also into the
tagNameElementListTypeColl property, which instructs Frontal to no treat the
children elements of the list tag, because it will be the ListContainer to do this
job.

Jack Smith from England

Eahindra Simgh from India

1

Pedro Hernandez from Mesico -

Figure 13 - List

<list id="tilelist" style="width:90%" maxColumns="1" columJidth="500"2

<th>
<div id="contlizt"” onload="init({);" dataChange="init():">
<aCcript>
function initi) {
war inp : Object = ctx.getCompi'lab'):
var d @ 0Object = ctx.getlCowmp|'contlist').parent.data;
var labelValue @ String = d.hame + ' ' + d,lasthame + ' from ' +
d. country:
inp.text = labelValue:
}
<facript-
<label id="lab"™ style="width:l00%" /=
<Adiv
< the

<dataproviders< | [CDATA[<tr=<sel>=N/sel>nane>=ingel o /manex<lastname>Costan
zasflasthnane><country=Italyl focountry=< /tr>

<tr=dsels=V fzel=dnanexJacks /fmamelx< lastname’ Sniths /lastname><country=Engl
and< fcountryrL AtE=

LLr>2el>V feel-<nane>Rahindra« mane><lazthane>=3ingh flastnane><country=
India</countrye-</tr>

LLre<selxN< /fselr<nane=Pedro< /nanex<lasthane>=Hernandez /lasthnane>< country
FMexicod fcountey=< /L1

LLrr<sel>¥</gelr<nane>3tewart< /hane><lastnane>Elack</lasthane><country>-0T
G /country=<ftr=]]
</dataprovider>
</1list:

Figure 14 - List Html Source

Frontal — version 1.0.0 25

package
{

‘idata=",

it.ang fromt al renderer componerts

impot it.ang frortal parser Elemert

import it.ang frortal renderer componerts interfaces Componerd terface;
impot it.ang frort al util Constants,

impoit it.ang fromtalatil FrontalClassFactory,

impont e ocollections XMLListCollection,
impoit pnocoomtrols TileList,

public class ListContainer extends TileList nmplermernts ComponentInterface
{

private var _element : Elemernt,

public function set element{ el Element] : vwoid {
this._elemernt = el;

'

public function get elemet() | Element {
return this._element;

h

public function ListContaines() |
super();

h

public function createComponerts(] : void §
for eachivar & : Elermnent in _elemerd childElement Array) §
ifle elementType == Constards elamentTypeTH) {
ifl e childElement & rray |= rmall) {

var rendererElemernt : Element = e childElement b rray[0];
var frontalCF : FromtalClassFactory = new FromtalClass Factord),
fromtalCF element = rendererElement
this temPenderer = frontalCF,

h
msertDatall;

h

private fanetion msertDiatal) @ woud {

this dataFrovider = new ZMLListCollection);

var data : XML,

for eachivar e : Element m _element childElement frray) {

ifle taglame == "dataprovider™) |
var datal : Strng
ifl e childElament & yray 1= mall &% o childElement Axay[0] |= roall) {
datal = '=data=' + Element(e childElement Aryar[07T) text +

data = XML(datas);
this dataProvider = new XMLLstCollaction data, 11,
selectedltern = rmall,

break;

Figure 15 - ListContainer

Frontal — version 1

.0.0

26

As you can see from the source of the ListContainer Class, the creation of the
probable item renderer and the reading of the data to visualize is
responsability of the class, which is a TileList.

LABEL
n the Frontal project it is present also the Flex component Label, for a pure
sense of convenience; it is associated to the html tag label and its property
text is populated by the html attribute value.

SWF

In the Frontal project it has been configured a particular tag named swf’; this
is converted by Frontal to a SWFContainer, which extends the Flex
SWFLoader Object, able to load the swf passed in the src attribute; in the tag
it is possible also declare the style attributes as width and height.

<swf src="project/assets/frontal.swf” style="height: 100p= "/ >

Figure 16 - Swf Html Source

Figure 17 - Swfloaded

Frontal — version 1.0.0

27

package it.ang.frontal.renderer. compohnents
{
import it.ang.frontal.parser.Element;
import it.ang.frontal.renderer.conponents. interfaces. ConponentInterface;

ilmport mx.controls. SWFLoader:

public class 3WFContainer extends 3WFLoader implements ComnponentIhterface
{

priwvate war _element : Element;

priwvate war _data : Element;

public function 3WFContaineri()

superi)

H

public function set elementiel:Element) : woid |
thiz. element = el;

'

public function get element() : Element !
retum this. element;

H

public function createComnponents() : woid {}

Figure 18 - SWFContainer

BEST PRACTICES
Here are some best practices in order to use Frontal with all its potentialities.

First of all, in the declaration of the tags, it is usefull defining the style
properties width and height; this leads to a better graphical result mostly
when are used container tags such as div and table.

The second advice is to insert text into a container, for example span and div;
these containers must have defined the width style property, and it's usefull
inserting the text into a CDATA section in order to inform Frontal to ignore
the parsing of the text.

RENDERER

In the Frontal project it is possible to interact directly with the components
responsable of the html parsing and of the generation of the Flex objects.

The class which parses the html code is the HtmlParser class; it has the
method parse with the input parameter represented by the html code; this
method delivers an Element instance built upon the html code, populated
with all the nested Element children.

Frontal — version 1.0.0 28

The class which gives birth to all the Flex objects is the FlexHtmIRenderer
class; this class has two important static methods that are renderElement and
renderintoElement; the first one accepts as input an Element object returning
the UlComponent generated, the second one accepts the as first input the
Element object an then the UlComponent in which it is desired to insert the
components generated by Frontal.

OE.

var cohtainer @ Container = hew Canwasi():
war el : Element = HtmlParser.parse(hmlitring) ;

FlexHtmlFenderer, renderIntoElenentiel , container);

var el : Element = HtmlParser.parse(hml3tring) :

var container

Conitaither = FlexHtmlBenderer.renderElementiel) !

NEXT WORKS

Figure 19 - Frontal Classes

The Frontal project is compiled using the 3.4.1 Flex sdk; next works will
include the development under the 4 sdk version, facing with the Spark
components.

Other works will be directed forward the integration of Frontal with cms
projects as Joomlal.

Frontal — version 1.0.0

29

ABOUT THE AUTHOR

Angelo Costanza
Born in Bari, Italy.

Degree in Computer Engineering.

Working as Software Engineer in Milan.

mail: angcostanza@gmail.com

ON-LINE REFERENCES

http://frontal.isapp.it

http://www.isapp.it

Frontal — version 1.0.0

30

http://www.isapp.it/
http://www.isapp.it/

	Menu
	 Introduction to Frontal
	What is Frontal?
	Why Frontal?
	How works Frontal?

	Topics
	Set Up
	Portal Extension
	Supported Tags
	Custom Tags
	ActionScript & Events
	Effects

	Samples
	DataGrid
	List
	Label
	SWF
	Best Practices
	Renderer

	Next Works
	About the Author
	On-Line References

